CMSC202
Computer Science Il for Majors

Lecture 02 —
C++ Primer (Continued)

Based on slides by Chris Marron at UMBC www.umbc.edu

Last Class We Covered

* Syllabus
* Course Expectations and Objectives

* Differences between Python and C++
— Interpreted vs compiled
— Explicitly stating type
— Semicolons
— Curly braces
* C++ is space insensitive!

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Announcements

* The course policy agreement is due back in
class by Tuesday, February 8t

— Worth 1% of your grade
— (Final is now worth 19%)

* The Blackboard site is now available

— It will be updated with a course schedule; we will
not be following Professor Marron’s schedule

— His page still has all of the information on
assignments and course policies

www.umbc.edu

Today’s Objectives

* To begin covering the very basics of C++
— Operators
— Input and Output
— Formatting Output
— Strings
— If, Else, If-Else
— Loops
— Other Control Structures

www.umbc.edu

What We’re Learning

e 202’s goal is not to teach you C++

* Want you to instead
— Become better problem solvers
— Learn more advanced techniques

— Become more confident in your skill

 C++is merely the tool we use

— (Which means you do need to learn it as well)

www.umbc.edu

Review: Literal Data

e Literals
— Examples:
2 // Literal constant int
5.75 // Literal constant double
'Z" // Literal constant char

"Hello World\n" // Literal constant string
e Cannot change values during execution

* Called "literals" because you "literally typed"
them in your program!

www.umbc.edu

Constants

* You should not use literal constants directly in
your code

— It might seem obvious to you, but not so:
* limit = 52
* |s this weeks per year... or cards in a deck?
* |nstead, you should use named constants
— Represent the constant with a meaningful name

— Also allows you to change multiple instances in a
central place

www.umbc.edu

Constants

* There are two ways to do this:

— Old way: preprocessor definition:

#define WEEKS_ PER YEAR 52

“u__n

(Note: there is no “=")
— New way: constant variable:

 Just add the keyword “const” to the declaration

const float PI = 3.14159;

www.umbc.edu

Arithmetic Operators

e Standard Arithmetic Operators

* Precedence rules — standard rules
— Parentheses
— Exponents
— Multiplication and...
— Division
— Addition and...
— Subtraction

* Note: do not use “*” for exponents

www.umbc.edu

Operators, Expressions

* Most programming languages have a variety
of operators

— Called unary, binary, and even ternary

— Depends on the number of operands
(things they operate on)

e Usually represented by special symbolic
characters: e.g., ‘+ for addition, “*’ for
multiplication

www.umbc.edu

Operators, Expressions

* There are also relational operators, and
Boolean operators

e Simple units of operands and operators
combine into larger units, according to strict
rules of precedence and associativity

 Each computable unit (both simple and larger
aggregates) is called an expression

www.umbc.edu

Binary Operators

* Whatis a binary operator?

— An operator that has two operands

<operand> <operator> <operand>

— Arithmetic Operators
+ - * /

o°

— Relational Operators
< > == <= >=

— Logical Operators
&& | |

13
www.umbc.edu

Relational Operators

AN HONORS UNIVERSITY IN MARYLAND

* |In C++, all relational operators evaluate to a boolean
value of either true or false .
x = 5;
y = 6;
x >y will always evaluate to false
* C++ has a ternary operator — the general form is:

(conditional expression) ? true case : false case ;

* Ternary example:

cout < ((x >y) ? "X is greater" : "Y is greater");

14
www.umbc.edu

Unary Operators

AN HONORS UNIVERSITY IN MARYLAND

* Unary operators only have one operand.
! ++ --

! islogical negation, !true is false, !false is true

++ and -- are the increment and decrement operators
x++ a post-increment (postfix) operation
++x a pre-increment (prefix) operation

e +4+ and -- are “shorthand” operators

e More on these later...

15
www.umbc.edu

Precedence, Associativity

Order of operations application to operands:

* Postfix operators: ++ -- (left to right)
* Prefix operators: ++ -- (right to left)
 Unaryoperators: + - ++ -- | (right to left)

o * [% (lefttoright)
e + - (lefttoright)
¢ < > <= >=

¢ &&

* |

e 7

 Assignment operator: = (right to left)

16
www.umbc.edu

Associativity

* What is the value of the expression?
3*6 /9
(3*6)/9
18 /9
2
 What about this one?
int x, y, z;

x:y:z:O;

www.umbc.edu

Arithmetic Precision

* Precision of Calculations
—VERY important consideration!

* Expressions in C++ might not
evaluate as you'd “expect”!

—"Highest-order operand"” determines type
of arithmetic "precision" performed

— Common pitfall!

www.umbc.edu

Arithmetic Precision Examples

 Examples:

— 17 /5 evaluates to 3 in C++!
* Both operands are integers
* Integer division is performed!

—17.0 /5 equals 3.4 in C++!

* Highest-order operand is "double type"
e Double "precision" division is performed!

—int intVarl = 1, intVar2 = 2;
intvVarl / intVar2;
* Performs integer division!
e Result: 0!

www.umbc.edu

Individual Arithmetic Precision

e Calculations done "one-by-one"

1/2/3.0/4 performs 3 separate divisions.
* First> 1/2 equalsO
* Then=> 0/ 3.0 equals 0.0
* Then—> 0.0/ 4 equals 0.0!

* So not necessarily sufficient to change
just "one operand” in a large expression

— Must keep in mind all individual calculations
that will be performed during evaluation!

www.umbc.edu

Type Casting

* Two types

— Implicit—also called "Automatic”

* Done FOR you, automatically
17 / 5.5

* This expression causes an "implicit type cast" to
take place, castingthe 17 =2 17.0

— Explicit type conversion

* Programmer specifies conversion with cast operator
static cast<double>17 / 5.5

« Same expression as above, using explicit cast
static_cast<double>myInt / myDouble

* More typical use; cast operator on variable

www.umbc.edu

Shorthand Operators

* Increment & Decrement Operators
— Just short-hand notation
— Increment operator, ++

intVar++; isequivalentto
intVar = intVar + 1;

— Decrement operator, —-

intVar--; is equivalent to
intVar = intvVar - 1;

www.umbc.edu

Shorthand Operators: Two Options

* Post-Increment
intVar++

— Uses current value of variable, THEN increments it

* Pre-Increment
++intVar

— Increments variable first, THEN uses new value

e "Use" is defined as whatever "context"
variable is currently in

— No difference if "alone" in statement:
intVar++; and ++intVar; = identical result

www.umbc.edu

Post-Increment in Action

* Post-Increment in Expressions:
int n = 2, valueProduced;

valueProduced = 2 * (n++) ;
cout << wvalueProduced << endl;
cout << n << endl;

— What output does this code segment produce?

4
3

— Since post-increment was used

www.umbc.edu

Pre-Increment in Action

* Now Using Pre-Increment:
int n = 2, valueProduced;

valueProduced = 2 * (++n) ;
cout << wvalueProduced << endl;
cout << n << endl;

— What output does this code segment produce?

6
3

— Since pre-increment was used

www.umbc.edu

Assigning Data: Shorthand Notations

AN HONORS UNIVERSITY IN MARYLAND

* You can use shorthand for many operations

count += 2; count = count + 2;

total -= discount; total = total - discount;

bonus *= 2; bonus = bonus * 2;

time /= rushFactor; time = time/rushFactor;

change %= 100; change = change % 100;

amount *= cntl + cnt2; amount = amount * (cntl + cnt2);

www.umbc.edu

Input and Output

www.umbc.edu

Console Input/Output

* Your input and output objects in C++ are called
cin, cout, cerr

* Defined in the C++ library called <iostream>

e Allow us to:

— Get input from the user
—Send output to the user

—Print error messages to the user

www.umbc.edu

Using namespace std

* At top of each file you must have

using namespace std;

* Otherwise you must use

std: :cin cin
std: :cout instead of cout
std: :endl endl

* Remember, you also need to have the library
#include <iostream>

29

www.umbc.edu

Console Output

 What can be outputted?
— Any data can be outputted to display screen
 Variables
* Constants
* Literals

* Expressions (which can include all of above)
— cout << numberOfGames << " games played.";

— 2 values are outputted:
e "value" of variable numberOfGames,
e literal string " games played."”

www.umbc.edu

Separating Lines of Output

* New lines in output
— Recall: "\n" is escape sequence for the char "newline"

A second option: endl

 Examples:
cout << "Hello World\n";

* Sends string "Hello World" to display, & escape
sequence "\n", skipping to next line

cout << "Hello World" << endl;
e Same result as above

www.umbc.edu

The << Operator

* Insertion operator; used along with cout

e Separates each “type” of thing we print out

int x = 3;

cout @ "X 1is: @x
@ ", squared "
x * x@endl;

32

www.umbc.edu

The >> Operator

e Extraction operator; used with cin

e Skips any leading whitespace, and stops
reading at next whitespace
cin >> firstName >> lastName >> age;

e Separates each “type” of thing we read in

33 www.umbc.edu

Input Using cin

* No literals allowed for cin

— Must input to a variable

* Waits on-screen for keyboard entry

—cin >> num;

— Value entered at keyboard is "assigned" to num

34

www.umbc.edu

Prompting for Input

* Always "prompt" user for input

cout << "Enter number of dragons: ";
cin >> numOfDragons;

* Note no "\n" in cout. Prompt "waits" on
same line for keyboard input

* Every cin should have a cout prompt

— Maximizes user-friendly input/output

35

www.umbc.edu

Error Output

* Output with cerr
—cerr works almost the same as cout

— Provides mechanism for distinguishing
between regular output and error output

* Re-direct output streams

— Most systems allow cout and cerr to be
"redirected" to other devices

e e.g., line printer, output file, error console, etc.

www.umbc.edu

Formatting Output

* Formatting numeric values for output

—Values may not display as expected
cout << "The price is $" << price << endl;

* If price (declared a double) has the
value 78.5, you might get

—The price is $78.5000000
—The price is §$78.5

* Neither is what you want

—Have to tell C++ how to output numbers.

www.umbc.edu

Formatting Numbers

* "Magic Formula" to force decimal sizes:

cout.setf (10s::fixed) ;
cout.setf (ios: :showpoint) ;
cout.precision(2) ;

e These statements force all future cout’ed values to
have exactly two digits after the decimal place:

— Example:
cout << "The price is $" << price << end|;

* Now results in the following:
The price is $78.50

* Can modify precision whenever you want in the code

www.umbc.edu

Formatting Integers

* Field width and fill characters
— Must #include <iomanip>
— setw(n) sets field width to n
— cout.fill (c) sets “fill” character to c

* Example:

—1int x = 7;
cout.fill('0'); //set £ill character to 0
cout << setw(3) << x << endl;

— QOutputs 007 (left pads with zeros)

www.umbc.edu

C-Strings and the String class

www.umbc.edu

C-strings

* C++ has two kinds of “strings of characters”:
— the original C-string: array of characters
— The object-oriented string class

e C-strings are terminated with a null character (‘\0’)
char myString[80];

declares a variable with enough space for a string
with 79 usable characters, plus the null char

www.umbc.edu

C-strings

* You can initialize a C-string variable:
char myString[80] = “Hello world”;

This will set the first 11 characters as given, make the
12th character ‘\0’, and the rest unused for now.

* What would these look like?
char strl [5] = “dog”;
char str2 [5] = “cat”;

char str3 [5];

www.umbc.edu

Arrays of Characters

char strl [5] = “dog”;

element 0 1 2 /3\

char \d’ ‘o ‘g’ (‘\0’) ‘x/
char str2 [5] = “cat”; —

element 0 1 2 /3\

char ‘cf ‘a’ ‘tf (‘\0’) b
char str3 [5]; g

element 0 1 2 3 /4\
char VLY ‘N’ ‘=’ ‘o (‘8’)

e str3 was only declarec

, not initialized, so it’s

filled with garbage and has no null terminator

43

www.umbc.edu

Terrible C-style string Joke

Two strings walk into a bar.

The bartender says, "What'll it be?"

The first string says, "I'll have a gin and
tonichMV*()>SDk+!"& @P&]JEA".

The second string says, "You'll have to excuse my
friend, he's not null-terminated.”

44

www.umbc.edu

String type

 C++ added a data type of “string”

— Not a primitive data type; distinction will be made later

— Need to #include <string> at the top of the
program

— The “4+” operator on strings concatenates two strings
together

—cin >> str where str isastring only reads up to
the first whitespace character

www.umbc.edu

String Equality

4

* |[n Python, you can use the simple “==°
operator to compare two strings:
1f name == “Fred”:

* |n C++, you can use “==" to compare two string
class items, but not C-strings!

* To compare two C-strings, you have to use the
function stremp () ;

— It is not syntactically incorrect to compare two
C-strings with “==" but it doesn’t do what you expect

www.umbc.edu

Programming Style

www.umbc.edu

Programming Style

* Bottom-line: Make programs easy to read and modify

e Comments, two methods:
— // Two slashes indicate entire line is to be ignored
— /*Delimiters indicates everything between is ignored*/
— Both methods commonly used

* |dentifier naming
— ALL_CAPS for constants
— lowerToUpper for variables
— Most important: MEANINGFUL NAMES!

www.umbc.edu

Libraries

e C++ Standard Libraries

* #include <library name>

— Directive to "add" contents of library file to
your program

— Called "preprocessor directive"

* Executes before compiler, and simply "copies”
library file into your program file

e C++ has many libraries
— Input/output, math, strings, etc.

www.umbc.edu

Summary Part 1

e C++ Is case-sensitive
* Use meaningful names
— For variables and constants

e Variables must be declared before use
— Should also be initialized

e Use care in numeric manipulation
— Precision, parentheses, order of operations

e #include C++ libraries as needed

www.umbc.edu

Summary Part 2

 Object cout

— Used for console output
* Object cin

— Used for console input
 Object cerr

— Used for error messages

* Use comments to aid understanding of
your program
— Do not over-comment

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Compilation

www.umbc.edu

Using the C Compiler at UMBC

* |[nvoking the compiler is system dependent.

— At UMBC, we have two C compilers available, cc
and gcc.

— For this class, we will use the gcc compiler as it is
the compiler available on the Linux system.

www.umbc.edu

Invoking the Compiler

* At the prompt, type

g++ -Wall program.cpp —o program.out

* where program. cpp is the C++ program
source file

e -Wall isan optionto turnon all
compiler warnings (really good idea!)

www.umbc.edu

The Executable File

* |If there are no errors in program.cpp, this command
produces an executable file, which is one that can be

executed (run).

— If you do not use the “-0” option, the compiler
names the executable file a.out

* To execute the program, at the prompt, type
./program.out

* Although we call this process “compiling a program,”
what actually happens is more complicated.

www.umbc.edu

The “make” System

 We will be using the “make” system to
automate what was shown in the previous
few slides

 This will be discussed in more detail in lab

www.umbc.edu

Expressions, Statements, and If

www.umbc.edu

Expressions

* An expression is a construct made up of
variables, operators, and method invocations,
that evaluates to a single value.

* For example:

int cadence = 0;

anArray[0] = 100;

cout << "Element 1 at index 0: " << anArray|[0]);
int result =1 + 2;

cout << (x ==y ? "equal" :"not equal");

www.umbc.edu

Statements

e Statements are roughly equivalent to
sentences in a language. A statement
forms a complete unit of execution.

* Two types of statements:

— Expression statements — end with a semicolon *;’
* Assignment expressions
* Any use of ++ or --
* Method invocations
* Object creation expressions
— Control Flow statements
* Selection & repetition structures

www.umbc.edu

If-Then Statement

* The if-then statement is the most basic of all
the control flow statements.

Python C++

if x == 2: if (x == 2)
print "x is 2" cout << "x is 2";
print "Finished" cout << "Finished";

www.umbc.edu

A brief digression...

Notes about C++’s if-then:

* Conditional expression must be in parentheses

* Conditional expression has various interpretations of
“truthiness” depending on type of expression

 |f-then raises questions about
— Multi-statement blocks
— Scope
— Truth in C++

www.umbc.edu

Multiple Statements

 What if our then case contains multiple
statements?

Python C++ (but incorrect!!)
if x == 2: if(x == 2)

print "even" cout << "even";

print "prime" cout << "prime";
print "Done!" cout << "Done!";

Unlike Python, spacing plays no role in C++’s
selection/repetition structures
* The C++ code is syntactically fine — no compiler errors

* However, it is logically incorrect

www.umbc.edu

Blocks

* A block is a group of zero or more statements
that are grouped together by delimiters.

* |[n C++, blocks are denoted by opening and

closing curly braces ‘{" and ¥
if(x == 2) {

cout << "even";

cout << "prime";

}

cout << "Done!";

Note:

* It is generally considered a good practice to include the curly
braces even for single line statements. Why?

www.umbc.edu

“Truthiness” **

e What is “true” in C++7?

* Like some other languages, C++ has a true
Boolean primitive type (bool), which can
hold the constant values true and false

* Assigning a Boolean value to an int
variable will assign O for false, 1 for true

** kudos to Stephen Colbert

www.umbc.edu

“Truthiness”

* For compatibility with C, C++ is very liberal
about what it allows in places where Boolean
values are called for:

— bool constants, variables, and expressions
have the obvious interpretation

— Any integer-valued type is also allowed

* Ois interpreted as “false”,
all other values as “true”

* So, even -1 is considered true!

www.umbc.edu

Gotcha! = versus ==

int a 0;

if (a = 1) {
cout << "a is one\n" ;

What happens here?

How do we fix it?

www.umbc.edu

If-Then-Else Statement

* The if-then-else statement looks much like it
does in Python (aside from the parentheses
and curly braces)

Python C++

if x % 2 == 1. if(x 5 2 == 1) {
print "odd" cout << "odd";

else: } else {

print "even" cout << "even';

}

www.umbc.edu

If-Else If-Else Statement

e Again, very similar...

Python C++
if x < y: if (x < y) {
print "x < y" cout << "x < y";
elif x > y: } else if (x > y) {
print "x > y" cout << "x > y";
else: } else {

print "x == y" cout << "x == y";

}

www.umbc.edu

Other Control Structures

www.umbc.edu

Switch Statement

* Unlike if-then and if-then-else, the switch
statement allows for any number of possible
execution paths.

 Works with any integer-based (e.g., char, int,
long) or enumerated type (covered later)

www.umbc.edu

Switch Statement

AN HONORS UNIVERSITY IN MARYLAND

int cardvalue = /* get value from somewhere */;
switch (cardvValue) {

case 1:
cout <<
break;

case 1l1:
cout <<
break;

case 12:
cout <<
break;

case 13:
cout <<
break;

default:
cout <<
break;

"Ace 1A ;

"Jack";

"Queen'" ;

(A} King w ;

cardValue;

Notes:

* break statements are typically
used to terminate each case.

* It is usually a good practice to
include a default case.

www.umbc.edu

Switch Statement

AN HONORS UNIVERSITY IN MARYLAND

switch (month) ({

case 1l: case 3: case 5: case 7:

case 8: case 10: case 12:
cout << "31 days";
break;

case 4: case 6: case 9: case 11:
cout << "30 days";
break;

case 2:
cout << "28 or 29 days";
break;

default:
cout << "Invalid month!";
break;

Note:
* Without a break statement, cases “fall through” to the next statement.

www.umbc.edu

Switch Statement

* The switching value must evaluate to an
integer or enumerated type

* The case values must be constant
or literal, or enum value

e The case values must be of the same
type as the switch expression

73

www.umbc.edu

While Loops

* The while loop executes a block of statements
while a particular condition is true.

e Pretty much the same as Python...

Python

count = 0;

while (count < 10):
print count
count += 1

print "Done!"

C++

int count = 0;

while (count < 10) {
cout << count;
count++;

}

cout << "Done!";

www.umbc.edu

For Loop

* The for statement provides a compact way to iterate
over a range of values.

for (initialization; termination; increment)

{

/* ... statement(s) ... */

}

* The initialization expression initializes the loop — it is
executed once, as the loop begins.

 When the termination expression evaluates to false,
the loop terminates.

* The increment expression is invoked after each
iteration through the loop.

www.umbc.edu

For Loop

* The equivalent loop written as a for loop

— Counting from start value (zero) up to (excluding)
some number (10)

Python for count in range (0, 10):
print count
print "Done!"

C++ for (int count = 0; count < 10; count++) {
cout << count;

}

cout << "Done!";

www.umbc.edu

For Loop

e Counting from 25 up to (excluding) 50 by 5s

PythOn for count in range (25, 50, 5):
print count
print "Done!"
C++

for (int count = 25; count < 50; count += 5){
cout << count;

}

cout << "Done!";

www.umbc.edu

Variable Scope

www.umbc.edu

Variable Scope

You can define new variables in many places in your code, so
where is it in effect?

A variable’s scope is the set of code statements in which the
variable is known to the compiler.

Where a variable can be referenced from in your program
Limited to the code block in which the variable is defined
For example:

if (age >= 18) {
bool adult = true;
}

/* can't access adult here */

www.umbc.edu

Scope Example

AN HONORS UNIVERSITY IN MARYLAND

What will this code do?

#include <iostream>
using namespace std;

int main() {
int x =3, yv = 4;

int x = 7;
cout << "x in block is " <K< x << endl;
cout << "y in block is " << y << endl;

cout << "x in main is " << x << endl;

return 0;

}

80 www.umbc.edu

Announcements

* The course policy agreement is due back in
class by Tuesday, February 8th

* The add/drop date has been
extended to February 10th

* Next Time: Functions and Arrays

81

www.umbc.edu

