CMSC202
Computer Science Il for Majors

Lecture 02 —
C++ Primer (Continued)

Based on slides by Chris Marron at UMBC www.umbc.edu



Last Class We Covered

* Syllabus
* Course Expectations and Objectives

* Differences between Python and C++
— Interpreted vs compiled
— Explicitly stating type
— Semicolons
— Curly braces
* C++ is space insensitive!
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Any Questions from Last Time?
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Announcements

* The course policy agreement is due back in
class by Tuesday, February 8t

— Worth 1% of your grade
— (Final is now worth 19%)

* The Blackboard site is now available

— It will be updated with a course schedule; we will
not be following Professor Marron’s schedule

— His page still has all of the information on
assignments and course policies
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Today’s Objectives

* To begin covering the very basics of C++
— Operators
— Input and Output
— Formatting Output
— Strings
— If, Else, If-Else
— Loops
— Other Control Structures
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What We’re Learning

e 202’s goal is not to teach you C++

* Want you to instead
— Become better problem solvers
— Learn more advanced techniques

— Become more confident in your skill

 C++is merely the tool we use

— (Which means you do need to learn it as well)
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Review: Literal Data

e Literals
— Examples:
2 // Literal constant int
5.75 // Literal constant double
'Z" // Literal constant char

"Hello World\n" // Literal constant string
e Cannot change values during execution

* Called "literals" because you "literally typed"
them in your program!
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Constants

* You should not use literal constants directly in
your code

— It might seem obvious to you, but not so:
* limit = 52
* |s this weeks per year... or cards in a deck?
* |nstead, you should use named constants
— Represent the constant with a meaningful name

— Also allows you to change multiple instances in a
central place
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Constants

* There are two ways to do this:

— Old way: preprocessor definition:

#define WEEKS_ PER YEAR 52

“u__n

(Note: there is no “=")
— New way: constant variable:

 Just add the keyword “const” to the declaration

const float PI = 3.14159;
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Arithmetic Operators

e Standard Arithmetic Operators

* Precedence rules — standard rules
— Parentheses
— Exponents
— Multiplication and...
— Division
— Addition and...
— Subtraction

* Note: do not use “*” for exponents
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Operators, Expressions

* Most programming languages have a variety
of operators

— Called unary, binary, and even ternary

— Depends on the number of operands
(things they operate on)

e Usually represented by special symbolic
characters: e.g., ‘+ for addition, “*’ for
multiplication

www.umbc.edu



Operators, Expressions

* There are also relational operators, and
Boolean operators

e Simple units of operands and operators
combine into larger units, according to strict
rules of precedence and associativity

 Each computable unit (both simple and larger
aggregates) is called an expression
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Binary Operators

* Whatis a binary operator?

— An operator that has two operands

<operand> <operator> <operand>

— Arithmetic Operators
+ - * /

o°

— Relational Operators
< > == <= >=

— Logical Operators
&& | |

13
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Relational Operators

AN HONORS UNIVERSITY IN MARYLAND

* |In C++, all relational operators evaluate to a boolean
value of either true or false .
x = 5;
y = 6;
x >y will always evaluate to false
* C++ has a ternary operator — the general form is:

(conditional expression) ? true case : false case ;

* Ternary example:

cout < (( x >y ) ? "X is greater" : "Y is greater");

14
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Unary Operators

AN HONORS UNIVERSITY IN MARYLAND

* Unary operators only have one operand.
! ++ --

! islogical negation, !true is false, !false is true

++ and -- are the increment and decrement operators
x++ a post-increment (postfix) operation
++x a pre-increment (prefix) operation

e +4+ and -- are “shorthand” operators

e More on these later...

15
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Precedence, Associativity

Order of operations application to operands:

* Postfix operators: ++ -- (left to right)
* Prefix operators: ++ -- (right to left)
 Unaryoperators: + - ++ -- | (right to left)

o * [ % (lefttoright)
e + - (lefttoright)
¢ < > <= >=

¢ &&

* |

e 7

 Assignment operator: = (right to left)

16
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Associativity

* What is the value of the expression?
3*6 /9
(3*6)/9
18 /9
2
 What about this one?
int x, y, z;

x:y:z:O;
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Arithmetic Precision

* Precision of Calculations
—VERY important consideration!

* Expressions in C++ might not
evaluate as you'd “expect”!

—"Highest-order operand"” determines type
of arithmetic "precision" performed

— Common pitfall!
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Arithmetic Precision Examples

 Examples:

— 17 /5 evaluates to 3 in C++!
* Both operands are integers
* Integer division is performed!

—17.0 /5 equals 3.4 in C++!

* Highest-order operand is "double type"
e Double "precision" division is performed!

—int intVarl = 1, intVar2 = 2;
intvVarl / intVar2;
* Performs integer division!
e Result: 0!
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Individual Arithmetic Precision

e Calculations done "one-by-one"

1/2/3.0/4 performs 3 separate divisions.
* First> 1/2 equalsO
* Then=> 0/ 3.0 equals 0.0
* Then—> 0.0/ 4 equals 0.0!

* So not necessarily sufficient to change
just "one operand” in a large expression

— Must keep in mind all individual calculations
that will be performed during evaluation!

www.umbc.edu



Type Casting

* Two types

— Implicit—also called "Automatic”

* Done FOR you, automatically
17 / 5.5

* This expression causes an "implicit type cast" to
take place, castingthe 17 =2 17.0

— Explicit type conversion

* Programmer specifies conversion with cast operator
static cast<double>17 / 5.5

« Same expression as above, using explicit cast
static_cast<double>myInt / myDouble

* More typical use; cast operator on variable
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Shorthand Operators

* Increment & Decrement Operators
— Just short-hand notation
— Increment operator, ++

intVar++; isequivalentto
intVar = intVar + 1;

— Decrement operator, —-

intVar--; is equivalent to
intVar = intvVar - 1;
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Shorthand Operators: Two Options

* Post-Increment
intVar++

— Uses current value of variable, THEN increments it

* Pre-Increment
++intVar

— Increments variable first, THEN uses new value

e "Use" is defined as whatever "context"
variable is currently in

— No difference if "alone" in statement:
intVar++; and ++intVar; = identical result
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Post-Increment in Action

* Post-Increment in Expressions:
int n = 2, valueProduced;

valueProduced = 2 * (n++) ;
cout << wvalueProduced << endl;
cout << n << endl;

— What output does this code segment produce?

4
3

— Since post-increment was used
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Pre-Increment in Action

* Now Using Pre-Increment:
int n = 2, valueProduced;

valueProduced = 2 * (++n) ;
cout << wvalueProduced << endl;
cout << n << endl;

— What output does this code segment produce?

6
3

— Since pre-increment was used
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Assigning Data: Shorthand Notations

AN HONORS UNIVERSITY IN MARYLAND

* You can use shorthand for many operations

count += 2; count = count + 2;

total -= discount; total = total - discount;

bonus *= 2; bonus = bonus * 2;

time /= rushFactor; time = time/rushFactor;

change %= 100; change = change % 100;

amount *= cntl + cnt2; amount = amount * (cntl + cnt2);
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Input and Output
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Console Input/Output

* Your input and output objects in C++ are called
cin, cout, cerr

* Defined in the C++ library called <iostream>

e Allow us to:

— Get input from the user
—Send output to the user

—Print error messages to the user
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Using namespace std

* At top of each file you must have

using namespace std;

* Otherwise you must use

std: :cin cin
std: :cout instead of cout
std: :endl endl

* Remember, you also need to have the library
#include <iostream>

29
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Console Output

 What can be outputted?
— Any data can be outputted to display screen
 Variables
* Constants
* Literals

* Expressions (which can include all of above)
— cout << numberOfGames << " games played.";

— 2 values are outputted:
e "value" of variable numberOfGames,
e literal string " games played."”
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Separating Lines of Output

* New lines in output
— Recall: "\n" is escape sequence for the char "newline"

A second option: endl

 Examples:
cout << "Hello World\n";

* Sends string "Hello World" to display, & escape
sequence "\n", skipping to next line

cout << "Hello World" << endl;
e Same result as above
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The << Operator

* Insertion operator; used along with cout

e Separates each “type” of thing we print out

int x = 3;

cout @ "X 1is: @x
@ ", squared "
x * x@endl;

32
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The >> Operator

e Extraction operator; used with cin

e Skips any leading whitespace, and stops
reading at next whitespace
cin >> firstName >> lastName >> age;

e Separates each “type” of thing we read in
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Input Using cin

* No literals allowed for cin

— Must input to a variable

* Waits on-screen for keyboard entry

—cin >> num;

— Value entered at keyboard is "assigned" to num

34
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Prompting for Input

* Always "prompt" user for input

cout << "Enter number of dragons: ";
cin >> numOfDragons;

* Note no "\n" in cout. Prompt "waits" on
same line for keyboard input

* Every cin should have a cout prompt

— Maximizes user-friendly input/output

35
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Error Output

* Output with cerr
—cerr works almost the same as cout

— Provides mechanism for distinguishing
between regular output and error output

* Re-direct output streams

— Most systems allow cout and cerr to be
"redirected" to other devices

e e.g., line printer, output file, error console, etc.
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Formatting Output

* Formatting numeric values for output

—Values may not display as expected
cout << "The price is $" << price << endl;

* If price (declared a double) has the
value 78.5, you might get

—The price is $78.5000000
—The price is §$78.5

* Neither is what you want

—Have to tell C++ how to output numbers.
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Formatting Numbers

* "Magic Formula" to force decimal sizes:

cout.setf (10s::fixed) ;
cout.setf (ios: :showpoint) ;
cout.precision(2) ;

e These statements force all future cout’ed values to
have exactly two digits after the decimal place:

— Example:
cout << "The price is $" << price << end|;

* Now results in the following:
The price is $78.50

* Can modify precision whenever you want in the code

www.umbc.edu



Formatting Integers

* Field width and fill characters
— Must #include <iomanip>
— setw(n) sets field width to n
— cout.fill (c) sets “fill” character to c

* Example:

—1int x = 7;
cout.fill('0'); //set £ill character to 0
cout << setw(3) << x << endl;

— QOutputs 007 (left pads with zeros)
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C-Strings and the String class
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C-strings

* C++ has two kinds of “strings of characters”:
— the original C-string: array of characters
— The object-oriented string class

e C-strings are terminated with a null character (‘\0’)
char myString[80];

declares a variable with enough space for a string
with 79 usable characters, plus the null char
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C-strings

* You can initialize a C-string variable:
char myString[80] = “Hello world”;

This will set the first 11 characters as given, make the
12th character ‘\0’, and the rest unused for now.

* What would these look like?
char strl [5] = “dog”;
char str2 [5] = “cat”;

char str3 [5];
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Arrays of Characters

char strl [5] = “dog”;

element 0 1 2 /3\

char \d’ ‘o ‘g’ (‘\0’) ‘x/
char str2 [5] = “cat”; —

element 0 1 2 /3\

char ‘cf ‘a’ ‘tf (‘\0’) b
char str3 [5]; g

element 0 1 2 3 /4\
char VLY ‘N’ ‘=’ ‘o (‘8’)

e str3 was only declarec

, not initialized, so it’s

filled with garbage and has no null terminator

43
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Terrible C-style string Joke

Two strings walk into a bar.

The bartender says, "What'll it be?"

The first string says, "I'll have a gin and
tonichMV*()>SDk+!"& @P&]JEA&#65535".

The second string says, "You'll have to excuse my
friend, he's not null-terminated.”

44
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String type

 C++ added a data type of “string”

— Not a primitive data type; distinction will be made later

— Need to #include <string> at the top of the
program

— The “4+” operator on strings concatenates two strings
together

—cin >> str where str isastring only reads up to
the first whitespace character
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String Equality

4

* |[n Python, you can use the simple “==°
operator to compare two strings:
1f name == “Fred”:

* |n C++, you can use “==" to compare two string
class items, but not C-strings!

* To compare two C-strings, you have to use the
function stremp () ;

— It is not syntactically incorrect to compare two
C-strings with “==" but it doesn’t do what you expect
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Programming Style
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Programming Style

* Bottom-line: Make programs easy to read and modify

e Comments, two methods:
— // Two slashes indicate entire line is to be ignored
— /*Delimiters indicates everything between is ignored*/
— Both methods commonly used

* |dentifier naming
— ALL_CAPS for constants
— lowerToUpper for variables
— Most important: MEANINGFUL NAMES!

www.umbc.edu



Libraries

e C++ Standard Libraries

* #include <library name>

— Directive to "add" contents of library file to
your program

— Called "preprocessor directive"

* Executes before compiler, and simply "copies”
library file into your program file

e C++ has many libraries
— Input/output, math, strings, etc.
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Summary Part 1

e C++ Is case-sensitive
* Use meaningful names
— For variables and constants

e Variables must be declared before use
— Should also be initialized

e Use care in numeric manipulation
— Precision, parentheses, order of operations

e #include C++ libraries as needed
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Summary Part 2

 Object cout

— Used for console output
* Object cin

— Used for console input
 Object cerr

— Used for error messages

* Use comments to aid understanding of
your program
— Do not over-comment
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AN HONORS UNIVERSITY IN MARYLAND

Compilation
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Using the C Compiler at UMBC

* |[nvoking the compiler is system dependent.

— At UMBC, we have two C compilers available, cc
and gcc.

— For this class, we will use the gcc compiler as it is
the compiler available on the Linux system.
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Invoking the Compiler

* At the prompt, type

g++ -Wall program.cpp —o program.out

* where program. cpp is the C++ program
source file

e -Wall isan optionto turnon all
compiler warnings (really good idea!)
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The Executable File

* |If there are no errors in program.cpp, this command
produces an executable file, which is one that can be

executed (run).

— If you do not use the “-0” option, the compiler
names the executable file a.out

* To execute the program, at the prompt, type
./program.out

* Although we call this process “compiling a program,”
what actually happens is more complicated.
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The “make” System

 We will be using the “make” system to
automate what was shown in the previous
few slides

 This will be discussed in more detail in lab
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Expressions, Statements, and If
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Expressions

* An expression is a construct made up of
variables, operators, and method invocations,
that evaluates to a single value.

* For example:

int cadence = 0;

anArray[0] = 100;

cout << "Element 1 at index 0: " << anArray|[0]);
int result =1 + 2;

cout << (x ==y ? "equal" :"not equal");
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Statements

e Statements are roughly equivalent to
sentences in a language. A statement
forms a complete unit of execution.

* Two types of statements:

— Expression statements — end with a semicolon *;’
* Assignment expressions
* Any use of ++ or --
* Method invocations
* Object creation expressions
— Control Flow statements
* Selection & repetition structures
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If-Then Statement

* The if-then statement is the most basic of all
the control flow statements.

Python C++

if x == 2: if (x == 2)
print "x is 2" cout << "x is 2";
print "Finished" cout << "Finished";
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A brief digression...

Notes about C++’s if-then:

* Conditional expression must be in parentheses

* Conditional expression has various interpretations of
“truthiness” depending on type of expression

 |f-then raises questions about
— Multi-statement blocks
— Scope
— Truth in C++
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Multiple Statements

 What if our then case contains multiple
statements?

Python C++ (but incorrect!!)
if x == 2: if(x == 2)

print "even" cout << "even";

print "prime" cout << "prime";
print "Done!" cout << "Done!";

Unlike Python, spacing plays no role in C++’s
selection/repetition structures
* The C++ code is syntactically fine — no compiler errors

* However, it is logically incorrect
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Blocks

* A block is a group of zero or more statements
that are grouped together by delimiters.

* |[n C++, blocks are denoted by opening and

closing curly braces ‘{" and ¥
if(x == 2) {

cout << "even";

cout << "prime";

}

cout << "Done!";

Note:

* It is generally considered a good practice to include the curly
braces even for single line statements. Why?
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“Truthiness” **

e What is “true” in C++7?

* Like some other languages, C++ has a true
Boolean primitive type (bool), which can
hold the constant values true and false

* Assigning a Boolean value to an int
variable will assign O for false, 1 for true

** kudos to Stephen Colbert
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“Truthiness”

* For compatibility with C, C++ is very liberal
about what it allows in places where Boolean
values are called for:

— bool constants, variables, and expressions
have the obvious interpretation

— Any integer-valued type is also allowed

* Ois interpreted as “false”,
all other values as “true”

* So, even -1 is considered true!
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Gotcha! = versus ==

int a 0;

if (a = 1) {
cout << "a is one\n" ;

What happens here?

How do we fix it?
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If-Then-Else Statement

* The if-then-else statement looks much like it
does in Python (aside from the parentheses
and curly braces)

Python C++

if x % 2 == 1. if(x 5 2 == 1) {
print "odd" cout << "odd";

else: } else {

print "even" cout << "even';

}
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If-Else If-Else Statement

e Again, very similar...

Python C++
if x < y: if (x < y) {
print "x < y" cout << "x < y";
elif x > y: } else if (x > y) {
print "x > y" cout << "x > y";
else: } else {

print "x == y" cout << "x == y";

}
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Other Control Structures
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Switch Statement

* Unlike if-then and if-then-else, the switch
statement allows for any number of possible
execution paths.

 Works with any integer-based (e.g., char, int,
long) or enumerated type (covered later)
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Switch Statement

AN HONORS UNIVERSITY IN MARYLAND

int cardvalue = /* get value from somewhere */;
switch (cardvValue) {

case 1:
cout <<
break;

case 1l1:
cout <<
break;

case 12:
cout <<
break;

case 13:
cout <<
break;

default:
cout <<
break;

"Ace 1A ;

"Jack";

"Queen'" ;

(A} King w ;

cardValue;

Notes:

* break statements are typically
used to terminate each case.

* It is usually a good practice to
include a default case.
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Switch Statement

AN HONORS UNIVERSITY IN MARYLAND

switch (month) ({

case 1l: case 3: case 5: case 7:

case 8: case 10: case 12:
cout << "31 days";
break;

case 4: case 6: case 9: case 11:
cout << "30 days";
break;

case 2:
cout << "28 or 29 days";
break;

default:
cout << "Invalid month!";
break;

Note:
* Without a break statement, cases “fall through” to the next statement.
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Switch Statement

* The switching value must evaluate to an
integer or enumerated type

* The case values must be constant
or literal, or enum value

e The case values must be of the same
type as the switch expression

73

www.umbc.edu



While Loops

* The while loop executes a block of statements
while a particular condition is true.

e Pretty much the same as Python...

Python

count = 0;

while (count < 10):
print count
count += 1

print "Done!"

C++

int count = 0;

while (count < 10) {
cout << count;
count++;

}

cout << "Done!";
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For Loop

* The for statement provides a compact way to iterate
over a range of values.

for (initialization; termination; increment)

{

/* ... statement(s) ... */

}

* The initialization expression initializes the loop — it is
executed once, as the loop begins.

 When the termination expression evaluates to false,
the loop terminates.

* The increment expression is invoked after each
iteration through the loop.
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For Loop

* The equivalent loop written as a for loop

— Counting from start value (zero) up to (excluding)
some number (10)

Python for count in range (0, 10):
print count
print "Done!"

C++ for (int count = 0; count < 10; count++) {
cout << count;

}

cout << "Done!";
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For Loop

e Counting from 25 up to (excluding) 50 by 5s

PythOn for count in range (25, 50, 5):
print count
print "Done!"
C++

for (int count = 25; count < 50; count += 5){
cout << count;

}

cout << "Done!";
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Variable Scope
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Variable Scope

You can define new variables in many places in your code, so
where is it in effect?

A variable’s scope is the set of code statements in which the
variable is known to the compiler.

Where a variable can be referenced from in your program
Limited to the code block in which the variable is defined
For example:

if (age >= 18) {
bool adult = true;
}

/* can't access adult here */
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Scope Example

AN HONORS UNIVERSITY IN MARYLAND

What will this code do?

#include <iostream>
using namespace std;

int main() {
int x =3, yv = 4;

int x = 7;
cout << "x in block is " <K< x << endl;
cout << "y in block is " << y << endl;

cout << "x in main is " << x << endl;

return 0;

}
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Announcements

* The course policy agreement is due back in
class by Tuesday, February 8th

* The add/drop date has been
extended to February 10th

* Next Time: Functions and Arrays
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